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ABSTRACT

Digital elevation models (DEMs) are used in the modeling of numerous coastal 

processes, including tsunamis, contaminant dispersal, and erosion. In the bathymetric realm, the 

distance between measurements typically increases farther from shore (i.e., deeper water), such 

that gridding interpolation to build a bathymetric DEM is often across large distances. This study 

examined the accuracy of interpolation in bathymetric DEMs using three common interpolation 

techniques: inverse distance weighting, spline, and triangulation. The goal was to examine the 

relationship between interpolation accuracy and sampling density, distance to the nearest depth 

measurement, and terrain characteristics. Kachemak Bay, Alaska was chosen as the study area 

due to its heterogeneous terrain. A split-sample method was developed to randomly separate 

depth measurements to be used for interpolation from those used to quantify interpolation 

accuracy. 

Our results show that the accuracy of the three evaluated interpolation techniques 

decreases: (i) at smaller cell sampling densities; (ii) as the distance to the nearest measurement 

increases; (iii) and in areas of high slope and curvature. Spline was found to be the most accurate 

technique, though all techniques have approximately equivalent accuracy at large cell sampling 

densities and shorter interpolation distances. From our analyses, we have derived predictive 

equations, for each interpolation technique, of the cell-level uncertainty introduced into 

bathymetric DEMs, as a function of the cell sampling density and interpolation distance. These 

equations permit the quantification of cell-level interpolation uncertainty in DEMs and, in turn, 

will aid in propagating that uncertainty into the modeling of coastal processes that utilize DEMs.
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INTRODUCTION

The oceans are truly Earth’s last great unknown (Smith and Marks, 2014). Surprisingly, 

the surfaces of Mars, Venus, and the Earth’s moon are mapped at a higher spatial resolution than 

the seafloor (Smith, 2004), as individual depth measurements of the Earth’s ocean can have data 

gaps of hundreds of kilometers (Smith and Sandwell, 1997). Bathymetric digital elevation 

models (DEMs) are continuous representations of the seafloor that are derived from depth 

measurements and are commonly stored in a raster data format comprised of a matrix of square 

cells, with each cell representing the average depth of the area contained within that cell. 

The National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical 

Data Center (NGDC) develops such bathymetric DEMs, as well as bathymetric models that are 

integrated with topography in the coastal zone, to support the modeling of tsunami propagation 

and coastal inundation (Eakins and Taylor, 2010). In order for the integrated bathymetric-

topographic DEMs to retain high spatial resolution in the coastal zone to support detailed 

inundation mapping, interpolation across large distances is typically required between sparse 

bathymetric measurements. Such extreme interpolation fills data gaps in the models that might 

cause instabilities in tsunami modeling runs (i.e., avoids null depth values).

The accuracy of modeling coastal processes, such as tsunami propagation and inundation, 

is partly dependent on the accuracy of the DEM, which in turn, is dependent on the accuracy of 

the depth measurements. As a result, uncertainty in the depth measurements propagates into 

uncertainty in the DEM, and into the modeling of such processes. A detailed description of depth 

measurement uncertainty is provided in Hare, Eakins, and Amante (2011). However, the low 

spatial resolution of many bathymetric surveys, especially those predating the use of modern 
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survey technologies (e.g., multibeam sonar), requires interpolation to estimate areas of unknown 

depths to develop the continuous representation of the seafloor. Consequently, the accuracy of 

modeling such coastal processes is also partly dependent on the accuracy of the interpolation 

technique.

The accuracy of an interpolation technique itself refers to the agreement of interpolated 

values to known or accepted values. However, interpolation techniques are typically used in 

areas without measured depths, and consequently the interpolation accuracy cannot be rigorously 

quantified. The lack of knowledge about interpolation deviations from known or accepted values 

within such data gaps represents the uncertainty introduced into DEMs by interpolation 

techniques (Wechsler, 2007). In this study we have quantified the accuracy of various 

interpolation techniques, using measured depths that are withheld from interpolation and 

subsequently used to quantify the interpolation accuracy. These depth measurements were 

considered the known or accepted values, despite any uncertainty of the measurements 

themselves, as previously mentioned. Predictive equations of cell-level interpolation uncertainty 

were then derived from the quantification of interpolation deviations from the measured depths.

Background

This research builds on numerous previous studies that investigated the accuracy of 

interpolation techniques used to develop DEMs (e.g., Aguilar et al., 2005; Akkala, 

Devabhaktuni, and Kumar, 2010; Ali, 2004; Anderson, Thompson, and Austin, 2005; Burrough 

and McDonnell, 1998; Carlisle, 2005; Chaplot et al., 2006; Declercq, 1996; Desmet, 1997; 

Erdogan, 2009; Erdogan, 2010; Fisher and Tate, 2006; Guo et al., 2010; Li and Heap, 2008; 
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MacEachren and Davidson, 1987; Smith, Holland, and Longley, 2005). Studies have found that 

the accuracy of all interpolation techniques is related to the sampling density and distribution of 

measurements (Aguilar et al., 2005; Anderson, Thompson, and Austin, 2005; Chaplot et al., 

2006; Erdogan, 2009; Erdogan, 2010; Guo et al., 2010; MacEachren and Davidson, 1987). In 

these previous studies, sampling density referred to either a percentage of original measurements 

(Aguilar et al., 2005; Anderson, Thompson, and Austin, 2005; Guo et al., 2010; MacEachren and 

Davidson, 1987) or a count of measurements per area (Chaplot et al., 2006; Erdogan, 2009; 

Erdogan, 2010). In this study, we define the cell sampling density as the percentage of the total 

number of cells in a DEM constrained by depth measurements at a given cell size. Previous 

studies have also found that the accuracy of all interpolation techniques is related to terrain 

characteristics (Aguilar et al., 2005; Carlisle, 2005; Erdogan, 2009; Erdogan, 2010; Guo et al., 

2010). 

While almost all previous studies focus on the accuracy of interpolation techniques in 

developing DEMs from dense topographic data, this research is unique in that it addresses the 

accuracy of interpolation techniques used to develop bathymetric DEMs from sparse depth 

measurements. The morphology of the seafloor differs from the morphology of land above sea-

level as a result of differences in natural processes including sedimentation and erosion. The 

differences between topographic and bathymetric DEMs in regards to the sampling density, 

subsequent interpolation distances, and in terrain characteristics, make it worthwhile to 

specifically assess the accuracy of interpolation techniques in developing bathymetric DEMs. 

Furthermore, this research addresses the current lack of literature on predictive equations of cell-

level interpolation uncertainty. 
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Interpolation

Interpolation is a mathematical process of predicting unknown values, such as ocean 

depths, using surrounding measured values (Burrough and McDonnell, 1998). Several different 

interpolation techniques exist for creating DEMs, and all techniques are based on the same 

assumption: that bathymetry is spatially autocorrelated. The notion of spatial autocorrelation is 

largely attributed to Tobler’s 1st Law of Geography, “Everything is related to everything else, but 

near things are more related than distant things” (Tobler, 1970). That is, the depth at one location 

is more similar to depths nearby than the depths far away. However, the different mathematical 

algorithms used in each interpolation technique produce divergent DEMs, even when developed 

from the same source data (e.g., Aguilar et al., 2005; Ali, 2004; Declercq, 1996; Erdogan, 2009).

Interpolation techniques can be classified into general groups based on the assumptions 

and features used to estimate the depths of unknown areas using surrounding known 

measurements. Interpolation techniques can be classified as either geostatistical or deterministic, 

local or global, and exact or inexact (Li and Heap, 2008). Geostatistical techniques, such as 

kriging, use both mathematical and statistical functions to estimate depths, while deterministic 

techniques, such as spline, IDW and triangulation, use the measurements directly and only 

mathematical functions to predict unknown values (Childs, 2004). Local techniques use a subset 

of measurements surrounding the location to be predicted and global techniques use all available 

measurements (Burrough and McDonnell, 1998). Lastly, exact interpolators always honor the 

measurements by creating a surface that have the same values at the locations of measurements, 

in contrast to inexact interpolators, which are not constrained by the measurement values at those 

locations (Burrough and McDonnell, 1998). Interpolation techniques can be any combination of 
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geostatistical or deterministic, local or global, and exact or inexact, and the technique should be 

chosen based on the measurement uncertainty, sampling density, sampling distribution, terrain 

characteristics, and computational resources. More specifically, each interpolation technique has 

particular mathematical constraints for predicting unknown values. 

Study Area

The bathymetry of Kachemak Bay, Alaska (Figure 1) was used to quantify the accuracy 

of the interpolation techniques. Kachemak Bay was chosen because of its variable terrain that 

ranges from areas of constant depths to areas of rapidly changing depths, and also because of the 

availability of high-resolution bathymetric data. An area of the bay with heterogeneous terrain 

was chosen in order to evaluate the effect of terrain on interpolation accuracy, with the initial 

assumption that interpolation accuracy would decrease in areas of high terrain slope and 

curvature. Kachemak Bay is fed by glacial run-off and the area surveyed has a variety of glacial 

sediments covered by a layer of sand that produces several types of bedforms and changes in 

depths (Bouma et al., 1980). 

METHODS

This study evaluated the accuracy of three common deterministic, local, exact 

interpolation techniques—inverse distance weighting (IDW), spline, and triangulation—in 

developing bathymetric DEMs of Kachemak Bay, Alaska. The overarching goal of the study was 

to examine the relationship between interpolation accuracy and the (i) cell sampling density, (ii) 

distance to the nearest depth measurement, and (iii) terrain characteristics, specifically the slope 
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and curvature. These three deterministic techniques were analyzed in this study because unlike 

geostatistical techniques, such as kriging, deterministic techniques do not provide an assessment 

of uncertainty along with the predicted values (Li and Heap, 2008). The accuracy of the three 

interpolation techniques was analyzed in this study using the Environmental Systems Research 

Institute (ESRI) ArcGIS 10.0 software (ESRI, 2010a).

Interpolation Techniques

IDW predicts unknown values using a linearly-weighted combination of sample points 

(Liu, 2007). The weight is a function of inverse distance and is raised to a user-defined 

mathematical power that controls the significance of known measurements based on their 

distance from the location to be predicted. A larger power results in distant measurements having 

less influence on the interpolated values, which produces a less smoothed surface. The number of 

measurements used for prediction can also be defined, with more depths resulting in smoother 

surfaces and more similar to global interpolation.

There are numerous types of spline interpolation, including thin plate spline, regularized 

spline, and spline with tension. Regularized spline was evaluated in this study. The regularized 

technique creates a smooth, gradually changing surface and allows for interpolated values 

outside the range of the measurement values (ESRI, 2010b). A user can further fine-tune this 

spline interpolation technique by the number of points and a weight parameter. The greater the 

number of points specified, the greater the influence of distant points, and the smoother the 

interpolated surface. For regularized spline, a greater weight results in a smoother surface (ESRI, 

2010b).
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The third technique evaluated is a vector representation of elevation: triangulation. 

Triangulation creates triangular irregular networks (TINs) by forming triangles between depth 

measurements. In this study, the Delaunay triangulation technique was evaluated. This technique 

ensures that no measurements lie within the interior of any of the circumcircles of the triangles in 

the network, while also maximizing the smallest interior angle of all triangles to avoid long, thin 

triangles (Soucy and Laurendeau, 1996).  

Terrain Characteristics

The terrain characteristics—specifically the slope and curvature—were used to identify 

the ability of each of the three previously described interpolation techniques to accurately 

represent heterogeneous terrain. The slope (also referred to as gradient) represents the maximum 

rate of change of depths, commonly in a three by three cell moving window (Burrough and 

McDonnell, 1998). A greater slope (units in degrees) corresponds to steeper surfaces. Curvature 

is the rate of change of the slope. There are three types of curvature: profile, plan, and total 

curvature. Profile and plan curvatures are the curvatures on a line formed by the intersection of a 

plane and the terrain surface.  The curvature of a line is the reciprocal of the radius of curvature, 

so a gradually changing curve has a small curvature, while a tight curve has a large curvature 

(Galant and Wilson, 2000). The total curvature represents the curvature of the surface itself, not 

the curvature of a line across the surface in a given direction (Galant and Wilson, 2000). A 

positive total curvature value represents an upwardly convex surface, while a negative total 

curvature value represents an upwardly concave surface. A curvature value of zero represents an 

area of constant slope. Both the slope and the total curvature were used to characterize the 

relationship between interpolation accuracy and terrain characteristics for each interpolation 
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technique, and the sign and strength of these relationships were quantified by calculating the 

Spearman’s rank correlation coefficient (Spearman, 1904).

Data

Kachemak Bay, Alaska was surveyed in 2008 with high-resolution multibeam swath 

sonar as part of the NOAA Hydropalooza project. One of the surveys, H11934, spans the entire 

study area, and was downloaded from NGDC’s National Ocean Service (NOS) Hydrographic 

Data Base in Bathymetric Attributed Grid (BAG) format (Brennan et al., 2005). This BAG had a 

4 m cell size and was referenced to UTM Zone 5 North and mean lower low water. It was 

converted to XYZ (eastings, northings, depth) format, and then averaged at a 10 m by 10 m cell 

size raster. This averaging ensured that every cell in the measured bathymetry raster (Figure 2, 

Panel A) had at least one contributing survey depth measurement, i.e., no values from 

interpolation. This 10 m cell size raster will be referred to henceforth as the measured depth 

raster. Slope and curvature rasters were derived from this measured depth raster (Figure 2, 

Panels B and C).

Accuracy Assessment

There are numerous methods to assess the accuracy of interpolation techniques. One 

approach is to quantify the differences between the interpolated surface and a higher-resolution 

independent data set (Chang and Tsai, 1991; Erdogan, 2009; Fisher and Tate, 2006; Robinson 

and Metternicht, 2005). This is often not possible due to the time and monetary resources needed 
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to collect the independent data set. Furthermore, it makes little sense to develop a DEM using 

interpolation and sparse measurements if a higher-resolution DEM is available.

More often, cross-validation and split-sample methodologies are used to determine the 

accuracy of interpolation techniques. The most common form of cross-validation is the “leave 

one technique” (Erdogan, 2009). This method consists of omitting one depth measurement prior 

to using an interpolation technique, and then the difference between the interpolated depth and 

the omitted measured depth is calculated. This process is repeated so that all depth measurements 

are omitted once. The differences between interpolated depths and omitted depths are then 

aggregated and an indication of the accuracy of the interpolation technique is provided by a 

global, non-spatial statistic, such as mean absolute error (MAE) or root mean square error 

(RMSE). 

A split-sample methodology uses the same method as cross-validation, except that a split-

sample method randomly omits a percentage of depth measurements and calculates the 

differences between the omitted depths and depths interpolated using the retained depths. The 

split-sample method is often used to assess changes in the accuracy of an interpolation technique 

when using various sampling densities (Declerq, 1996; Erdogan, 2009; Smith, Holland, and 

Longley, 2005).  A split-sample method was used in this research to simulate sparse bathymetric 

data sets due to our interest in interpolating across many cells. The method splits depths 

randomly, at cell sampling densities of 1%, 5%, 10%, 25%, and 50% (Figure 3). The Kachemak 

Bay measured depth raster (Figure 2, Panel A) was the source for all depths used for 

interpolation and evaluation.   

Implementation of Split-Sample Methodology



13

The split-sample methodology was implemented 200 times, for each technique, at each of 

the five cell sampling densities. During each split-sample routine, the retained depths were 

gridded using the specified interpolation technique, and the resulting interpolated raster was 

compared, on a cell-by-cell basis, to the measured depth raster to quantify the interpolation 

deviation. For each cell, the Euclidean distance to the nearest measurement was 

calculated—measured in map units (meters) but converted to raster cell units by dividing by the 

cell size (10 m). The interpolation deviations were then statistically compared, on a cell-to-cell 

basis, to the distances to the nearest measurement, as well as the slope and curvature rasters. The 

cell comparisons were aggregated, at each of the five cell sampling densities, and used to assess 

the relationships between these variables. They were also used to develop predictive equations of 

interpolation uncertainty, using ordinary least squares (OLS) linear regression, which may be 

applicable in other areas with sparse depth measurements.

Numerous steps were taken to limit bias in the analysis. First, reasonable parameters for 

each interpolation technique were identified, as inappropriate parameters can cause significant 

artifacts in the interpolated surface, especially with IDW (Akkala, Devabhaktuni, and Kumar, 

2010; Burrough and McDonnell, 1998) and spline interpolation (Cebecauer, Hofierka, and Suri, 

2002; Mitasova and Mitas, 1993).  Numerous combinations of the interpolation parameters were 

evaluated using a brute-force methodology. The parameters for each interpolation technique that 

resulted in the lowest median percent deviation for the entire study area were identified and then 

used in all subsequent analyses. For IDW: “Power” of 2, and a “Variable Search Radius” of 8 

points. For spline: regularized “Spline Type,” a “Weight” of 1, and 100 “Number of Points.” The 

triangulation parameter used in analysis was a linear interpolation “Raster Conversion Method.” 
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Each TIN vector representation of the Kachemak Bay seafloor was converted to a 10 m cell size 

raster for direct comparison to the other two interpolation techniques. There can be loss of 

accuracy when converting a TIN to a raster format, but a comprehensive evaluation of such loss 

was outside of the scope of this research and was assumed to be negligible. In general, the raster 

better represents the TIN surface as the cell size decreases (ESRI, 2010c).  

Depth measurements along the border of the study area were used to guide bathymetric 

interpolation and minimize edge effects during analysis. The area of analysis was also restricted 

to a subset of the original study area by 12 cells (120 m) on each side. This ensured that the edge 

of the area of analysis had a range of distances to the nearest measurement, without biasing 

towards depths along the outermost border of the study area (Figure 4). This subset area used for 

analysis also ensured that slope and curvature values were accurate by having a full three by 

three window for calculation. 

The deviations of the interpolated depths were quantified as percent deviations, by 

dividing the deviation by the original measured depth. Tsunami modeling requires more 

accurate, higher-resolution DEMs in shallow waters near-shore compared to less accurate, lower-

resolution DEMs in deeper waters off-shore (Titov et al., 2003). Normalizing the deviation by 

the measured depth balances the importance of interpolation accuracy for both shallow and deep 

waters. Furthermore, this normalization allows for the predictive equations of interpolation 

uncertainty developed from the percent deviations to be used irrespective of water depth. 

To isolate the effect of terrain on interpolation deviations, it was necessary that the 

distance to the nearest measurement be similar for every raster cell in the study area. The split-

sample method was a random process and therefore the median distance to the nearest 

measurement for every cell wasn’t exactly the same, but instead showed a Gaussian distribution. 
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For example, after aggregating 200 iterations of the split-sample method at the 1% cell sampling 

density, the median distance to the nearest measurement for each cell ranged from 4.3 to 5.7 

cells, with a median distance of 5 cells. With a similar median distance to the nearest 

measurement, variability in the interpolation deviations could be attributed to the terrain 

characteristics. Interpolation median percent deviation maps were created from the aggregation 

of 200 split-sample routines at each cell sampling density to address the inadequacy of global, 

non-spatial measures of accuracy by visualizing clusters of high and low accuracy resulting from 

varying terrain characteristics. 

RESULTS

Our results show that the accuracy of the three evaluated interpolation techniques 

decreases: (i) at smaller cell sampling densities; (ii) as the distance to the nearest measurement 

increases; (iii) and in areas of high slope and curvature. Spline was found to be the most accurate 

interpolation technique, though all techniques have approximately equivalent accuracy at large 

cell sampling densities and shorter interpolation distances. From our analyses, we derived 

predictive equations, for each interpolation technique, of the cell-level uncertainty introduced 

into bathymetric DEMs, as a function of the cell sampling density and interpolation distance. 

Influence of Cell Sampling Density on Interpolation Deviations

The largest differences in absolute median percent deviation between the three 

interpolation techniques occurred when using a 1% cell sampling density. The median value 
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from the aggregation of the absolute median percent deviations after 200 split-sample routines 

when using a 1% cell sampling density was 0.27% for spline, 0.78% for IDW and 0.39% for 

triangulation. As the cell sampling density increased, the median distance to the nearest 

measurement decreased, and the accuracy of all interpolation techniques increased (Figure 5). 

Influence of Terrain on Interpolation Deviations

The interpolation median percent deviation maps created from the aggregation of 200 

split-sample routines illustrate the non-stationarity of interpolation deviations from the measured 

depths that is the result of heterogeneous terrain with varying slope and curvature (Figure 6). In 

areas of flat terrain (low slope and low curvature), the deviations for interpolation techniques 

were small, whereas the interpolation deviations were larger in areas of high slope and curvature. 

A negative median percent deviation indicated that the interpolated depths were shallower than 

the measured depths and a positive median percent deviation indicated that the interpolated 

depths were deeper than the measured depths. The median percent deviation maps also visually 

illustrate that spline interpolation is the most accurate of the three evaluated techniques (Figure 

6). 

All interpolation techniques show a similar pattern of deviations that is strongly 

associated with the terrain. When visually comparing the median percent deviation maps in 

Figure 6 to the slope and curvature rasters of the study area shown in Figure 2, Panels B and C, it 

is evident that the interpolation deviations for all techniques are positively correlated with both 

slope and curvature. The Spearman’s rank correlation coefficient between the absolute median 

percent deviation and the slope using the 1% cell sampling density was 0.46 for IDW, 0.26 for 
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spline and 0.42 for triangulation, and all correlations were statistically significant with P-values 

less than 0.001. The Spearman’s rank correlation coefficient between the median percent 

deviation and the curvature at the 1% cell sampling density was 0.44 for IDW, 0.56 for spline, 

and 0.49 for triangulation, and all correlations were statistically significant with P-values less 

than 0.001. The influence of terrain slope and curvature on the differences between the 

interpolated depths and the measured depth raster can be illustrated by extracting a profile across 

the south-central portion of the original study area, as is shown in Figure 7, Panel D.  

Predictive Equations of Cell-level Interpolation Uncertainty

Predictive equations of cell-level interpolation uncertainty were derived from the 

quantification of interpolation deviations from the measured depths. Figure 8 shows the 

relationship between the absolute median percent deviation and the distance to the nearest 

measurement at the various cell sampling densities (1%, 5%, 10%, 25%, and 50%) with best-fit 

OLS regression lines (Table 1). The relationship between these variables diverges from the stable 

linear trend when the statistical sample size becomes small (less than ~300 counts). At smaller 

sample sizes, the absolute median percent deviation may be biased by the local terrain effects 

rather than being representative of the median slope and curvature across the entire study area. 

Those statistically insignificant results due to low sample size were eliminated prior to deriving 

the best-fit linear regression equations (Table 1). The y-intercepts of the regression equations are 

zero as all three techniques are exact interpolators.

DISCUSSION
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These results support previous studies that investigated the accuracy of interpolation 

techniques in relationship to the sampling density (Aguilar et al., 2005; Anderson, Thompson, 

and Austin, 2005; Chaplot et al., 2006; Erdogan, 2009; Erdogan, 2010; Guo et al., 2010; 

MacEachren and Davidson, 1987) and terrain characteristics (Aguilar et al., 2005; Carlisle, 2005; 

Erdogan, 2009; Erdogan, 2010; Guo et al., 2010). Previous research focused on topographic 

DEMs, and this study indicates that the accuracy of interpolating bathymetric DEMs produces 

similar results, in spite of the different terrain characteristics. 

This study advances previous research by implementing the split-sample method 200 

times and aggregating the interpolation deviations to show a clear relationship between 

interpolation deviations and terrain characteristics that was not biased by the distance to the 

nearest measurement. Furthermore, use of a data “buffer” around the study area, as shown in 

Figure 4, minimized edge effects in the interpolated DEMs, as well as minimizing the influence 

of border measurements when deriving predictive equations of cell-level interpolation 

uncertainty.

Influence of Terrain on Interpolation Deviations

A previous study by Guo et al. (2010) established that interpolation deviations were 

correlated with the elevation coefficient of variation of the terrain, but indicated that more 

research was needed to identify the specific terrain variables, such as slope or curvature, that will 

have the greatest effect on interpolation accuracy. Our research indicates that the deviations for 

each interpolation technique are positively correlated with both slope and curvature, and that 
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there are also differences with the strength of the correlations for each technique. The 

Spearman’s rank correlation coefficients indicate that deviations for all three interpolation 

techniques are most strongly correlated with curvature. Deviations with spline interpolation are 

especially correlated with curvature as the spline interpolated surface exhibits “overshoots” near 

areas of high curvature due to its minimum curvature algorithm (Figure 7, Panel D). The 

Spearman’s rank correlation coefficients also indicate that deviations for all three interpolation 

techniques are correlated with slope, although spline deviations exhibit a lower correlation 

coefficient than both IDW and triangulation. Both IDW and triangulation are linear-weighted 

algorithms and are less accurate near areas of high slope, as local bathymetric maxima and 

minima cannot be represented unless they have been directly measured. Accordingly, local 

maxima are “pulled” down and local minima are “pulled” up by surrounding measurements with 

both IDW and triangulation interpolation techniques (Figure 7, Panel D).  

A previous study by Erdogan (2010) modeled interpolation deviations with slope and 

curvature as the independent variables at various sampling densities with both OLS and a local 

regression technique—geographically weighted regression (GWR). Erdogan (2010) used these 

regression techniques as exploratory tools to assess the relationship between interpolation 

deviations and terrain variability, and to assess the differences between the regression techniques 

in modeling the non-stationary magnitude of interpolation deviations that results from 

heterogeneous terrain. These comparative regression analyses were not performed in this study, 

though this may be worthy of further investigation.  

Predictive Equations of Cell-level Interpolation Uncertainty
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The predictive equations of cell-level interpolation uncertainty based on the cell sampling 

density and distance to the nearest measurement (Table 1) all show linear trends in Figure 8, but 

the slope of the regression line decreases with larger cell sampling densities. The differences in 

the slope of the line indicate that it is not only the distance to the nearest measurement to an 

unconstrained cell that determines the accuracy of the interpolated cell, but that the accuracy is 

also related to the cell sampling density. Even if the distance to the nearest measurement is the 

same when using different cell sampling densities, the distance to the next nearest measurements 

that are also used for interpolation will likely be closer at larger cell sampling densities. These 

closer depths that are also used for interpolation are more similar to the unknown depth to be 

interpolated according to Tobler’s 1st Law of Geography (Tobler, 1970), resulting in smaller 

interpolation deviations at larger cell sampling densities. 

More specifically, the effect of cell sampling densities is evident when comparing the 

median percent deviations for a given interpolation technique at a specific distance to the nearest 

measurement for the various cell sampling densities. For example, the median percent deviation 

at a distance of one cell to the nearest measurement decreases with increasing cell sampling 

density. For IDW, the median percent deviation at a 1 cell distance away from a depth 

measurement is 0.28%, 0.22%, 0.19%, 0.14%, and 0.1% at 1%, 5%, 10%, 25%, and 50% cell 

sampling density, respectively. Spline and triangulation exhibit the same decreasing median 

percent deviation at a distance of one cell to the nearest measurement when increasing the cell 

sampling density, and all three interpolation techniques also exhibit this decreasing median 

percent deviation for other distances to the nearest measurement when increasing the cell 

sampling density.
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Accordingly, both the cell sampling density and distance to the nearest measurement 

were used to develop predictive equations of the interpolation uncertainty on a cell-to-cell basis. 

The cell sampling density can be calculated for an area of sparse depth measurements as the 

percentage of cells in the DEM constrained by a depth measurement at a given cell size. A DEM 

developer could therefore change the cell sampling density for an area with depth measurements 

by adjusting the cell size. For example, decreasing the cell size would result in a smaller 

percentage of cells in the DEM constrained by depth measurements, and therefore a smaller cell 

sampling density. Also, if the cell sampling density is between one of the percentages evaluated 

in this study, a weighted-average of the two closest linear regression equations provided in Table 

1 could be calculated to predict the median percent interpolation uncertainty. 

The relationship between the cell sampling density and the median absolute percent 

deviation shown in Figure 5 provides a global, non-spatial assessment of interpolation accuracy. 

Such assessments assume a similar distance to the nearest measurement and terrain variability 

for every cell, which typically is not the case with sparse depth measurements. The inadequacy 

of these accuracy assessments in regards to the typically irregular distribution of measurements, 

and subsequent varying interpolation distances, is addressed by deriving equations to estimate 

interpolation uncertainty using distance to the nearest measurement and the cell sampling 

density. Methods to address the inadequacy of these global, non-spatial assessments of accuracy 

in regards to terrain variability are proposed towards the end of the following subsection.

Limitations
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A limitation of the equations in Table 1 is that they were developed from quantifying the 

interpolation deviations for only one DEM cell size (10 m). Further research using other cell 

sizes may reveal the impact of DEM cell size on derived predictive equations of interpolation 

uncertainty, and determine if the equations in Table 1 are more widely applicable across a range 

of DEM cell sizes. 

Furthermore, these regression equations are best-suited for Kachemak Bay and 

presumably for areas of similar terrain, as the slope and the curvature were found to be positively 

correlated with the interpolation deviations. The regression equations provided in Table 1 can be 

applied to other areas with the caveat that these equations may underestimate interpolation 

uncertainty in areas of higher slope and curvature than Kachemak Bay, and overestimate 

interpolation uncertainty in areas of lower slope and curvature (e.g., plains). It would be useful to 

incorporate terrain characteristics, such as slope and curvature, directly into predictive equations 

of interpolation uncertainty. However, such efforts fall outside the focus of this study, and terrain 

characteristics would be presumably unknown in regions with sparse measurements requiring 

large interpolation distances anyway.

Slope and curvature could indirectly be incorporated into the predictive equations of 

interpolation uncertainty by implementing the methodology presented in this research on a 

number of different terrains (e.g., low slope and low curvature; high slope and high curvature; 

high slope and low curvature) to create a range of uncertainty equations. If there was a densely 

mapped area nearby with presumably similar terrain to an area requiring interpolation, as 

expected when considering Tobler’s 1st Law of Geography (Tobler, 1970), then this information 

could be used to further constrain the predictive uncertainty equation. While potentially useful, 

such analyses were beyond the scope of the research presented in this manuscript. 
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The results of this research do suggest that slope and curvature would aid in predicting 

interpolation uncertainty when interpolating across small distances (e.g., 1 or 2 cells) in 

topographic DEMs. In these cases, the slope and curvature could be reasonably estimated from 

the interpolated DEM.  Future research could advance the results presented in this manuscript, as 

well as the work of Aguilar et al. (2005), Carlisle (2005), Erdogan (2009), Erdogan (2010), and 

Guo et al. (2010), by improving the incorporation of terrain characteristics in predicting 

interpolation uncertainty in both bathymetric and topographic DEMs. 

CONCLUSIONS

We evaluated the accuracy of three common interpolation techniques (IDW, spline, and 

triangulation) in developing bathymetric DEMs of Kachemak Bay, Alaska. Spline was found to 

be the most accurate interpolation technique, though all techniques have approximately 

equivalent accuracy at large cell sampling densities and shorter interpolation distances. 

Furthermore, we have quantified the relationship between interpolation deviations from 

measured depths and the distance to the nearest depth measurement for each interpolation 

technique with various cell sampling densities. From this quantification, we derived regression 

equations at each cell sampling density that can be used to predict, on a cell by cell basis, the 

uncertainty introduced into DEMs by these interpolation techniques. 

Kachemak Bay, Alaska was chosen as the study area because it has heterogeneous terrain 

(i.e., a wide range of spatially varying slope and curvature values). We expect that similar 

interpolation accuracy analyses in other types of terrain would derive regression 

equations—based on the relationship between interpolation deviations and distance to the nearest 
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depth measurement for various cell sampling densities—that are roughly consistent with our 

results for Kachemak Bay bathymetry. This research has indicated that interpolation deviations 

are positively correlated with both slope and curvature, and future research efforts should 

implement the robust and easily reproducible methodology described in this manuscript to derive 

more refined predictive equations of interpolation uncertainty for terrain that differs from 

Kachemak Bay. Future research should also investigate the impact of DEM cell size on derived 

predictive equations of interpolation uncertainty. 

The modeling of numerous coastal processes, such as tsunami propagation and 

inundation, contaminant dispersal, and erosion, contain inherent uncertainty in their results that 

originates from many different sources. DEMs, which are used to model numerous coastal 

processes, are often one of those sources of uncertainty. The ability to quantify DEM 

uncertainty, which includes uncertainty from the source data, morphologic change, and from the 

uncertainty introduced by the interpolation technique described in this manuscript, will support 

efforts to quantify the uncertainty in coastal research results that utilize these models of the 

Earth’s surface. 
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TABLES

Table 1. Regression equations* for predicting cell-level interpolation percent uncertainty in 

other areas of sparse depth measurements. The equations predict the cell-level 

interpolation percent uncertainty (y) as a function of distance to the nearest measurement 

(x), in cell units, at various cell sampling densities.

Interpolation 

Technique

Cell Sampling 

Density (%)

Regression 

Equation

R2 P-value

IDW 50 y = 0.0848x 0.9933 p = 0.003

25 y = 0.0976x 0.9919 p < 0.001

10 y = 0.109x 0.9878 p < 0.001

5 y = 0.1162x 0.9837 p < 0.001

1 y = 0.156x 0.9940 p < 0.001

Spline 50 y = 0.0306x 0.9934 p = 0.003

25 y = 0.0259x 0.9777 p < 0.001

10 y = 0.0302x 0.9936 p < 0.001

5 y = 0.0354x 0.9971 p < 0.001

1 y = 0.0642x 0.9989 p < 0.001

Triangulation 50 y = 0.0429x 0.9995 p < 0.001

25 y = 0.0453x 0.9979 p < 0.001

10 y = 0.0565x 0.9973 p < 0.001

5 y = 0.0599x 0.9979 p < 0.001
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1 y = 0.0867x 0.9992 p < 0.001

* These equations (depicted in Figure 8) do not have a y-intercept as all three interpolation techniques are exact 

interpolators and there is therefore no interpolation uncertainty for a cell at the location of a depth measurement.
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FIGURES

Figure 1. Color image of Kachemak Bay, AK (derived from DEM of Friday et al., 2010). 

Red box in the bay outlines the study area, depicted in Figure 2.

Figure 2. Color images of the measured depths (Panel A), slope (Panel B), and curvature 

(Panel C) used in this study. The measured depth raster, at a 10 m cell size, was the source 

of all split-sample depths used for interpolation and subsequent accuracy evaluation. The 

slope and curvature rasters were derived from the measured depth raster in order to 

analyze the effect of heterogeneous terrain on interpolation accuracy. Note that the 
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pixilation evident in the curvature raster (Panel C) reflects amplification of fine-scale noise 

in the measured depth raster and original survey.

Figure 3. Flowchart depicting the split-sample method for quantifying interpolation 

deviations. A) The original data, averaged to have exactly one depth value per grid cell, are 
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randomly split by a fixed percentage (e.g., 50%) into training (“retained”) and test 

(“omitted”) data. B) An interpolation technique (e.g., spline) is applied to the training data 

to build an interpolated DEM (interpolated cells represented by hollow squares). C) The 

interpolated DEM is compared to the test data to quantify the interpolation deviations 

(represented by filled squares). Steps A to C are repeated for each interpolation technique 

at a consistent split-percentage to account for spatial bathymetric variability (i.e., 

randomness producing different training and test data). The interpolation technique is run 

iteratively using different split-percentages to evaluate the change in magnitude of 

interpolation deviations of the chosen interpolation technique at various cell sampling 

densities.

Figure 4. An example of the distance to the nearest depth measurement raster. Note the 

data “buffer” of depth measurements along the border of the study area used to guide 

interpolation across the region of analysis outlined by the inner box (map shown at 30 m 

cell size for visualization purposes).
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Figure 5. Absolute median percent deviation as a function of cell sampling density for the 

entire study area. The largest differences in absolute median percent deviation between the 

three interpolation techniques occurred when using a 1% cell sampling density. As the cell 

sampling density increased, the median distance to the nearest measurement decreased, 

and the accuracy of all interpolation techniques increased.

Figure 6. Color images of the median percent deviation after 200 IDW (Panel A), spline 

(Panel B), and triangulation (Panel C) interpolation routines using a random 1% cell 

sampling density. A negative median percent deviation indicated that the interpolated 

depths were shallower than the measured depths and a positive median percent deviation 

indicated that the interpolated depths were deeper than the measured depths. IDW and 

triangulation resulted in larger deviations from measured depths, especially in areas of 
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high slope and curvature. Spline resulted in smaller deviations, with its largest deviations 

in areas of high curvature. See Figure 7 for a more detailed figure on the influence of 

terrain on interpolation deviations.

Figure 7. The influence of terrain on the differences between the median interpolated 

depths and the original measured depth raster after 200 iterations using a random 1% cell 

sampling density. A profile across the south-central portion of the original study area is 

represented by the black line overlaying the color images of the measured depths (Panel A), 
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and the slope (Panel B) and curvature (Panel C) derived from the measured depths. Panel 

D shows the profile and the differences between the interpolation techniques in 

representing areas of high slope (dashed arrow) and high curvature (solid arrow). Also 

note that IDW and triangulation produced local maxima that are “pulled” down compared 

to the measured depths and local minima that are “pulled” up compared to the measured 

depths, and that spline can produce “overshoots” near areas of high curvature. 
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Figure 8. Relationship between the absolute median percent deviation and the distance to 

the nearest measurement at the 1%, 5%, 10%, 25%, and 50% cell sampling densities 

shown by the best-fit OLS regression lines for IDW (Panel A), spline (Panel B), and 

triangulation (Panel C). For each interpolation technique, the smallest cell sampling 

density (1%) resulted in the highest slope and highest absolute median percent deviation at 

all interpolation distances (regression line on top of each panel). The slope and absolute 

median percent deviation decreases at larger cell sampling densities. Also note that the 

length of the regression lines decrease at larger cell sampling densities as the distances to 

the nearest measurement decreases due to smaller interpolation distances. 


